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NOMENCLATURE

Dimensional Quantities Dimensionless Quantities

a, Radius of circular tube, ft gi Ui/ai

a, Width of annular space, ft H Heat-capacity flow-rate ratio,
b Thickness of circular tube wall, ft CZWZ/(Clwl)

b' Effective thickness of circular tube K Relative fhevmalifery St

wall, ft [see equation (5a)] fluid; see equation (22)

o3 Heot e aracity of fluid "3, Ky Relative thermal resistance of

Btu/(1bm)(°F) wall; see equation (23)
= 1 nan
D; Hydraulic equivalent diameter, ft Pe; Peclet number for fluid "i
1 mnman
hj Heat transfer coefficient for chan- Nuj Nusselt number for channel "i
nel “," Btu/(hr)(ftz)(oF) Nug Overall Nusselt number based on

channel "i"

ky Thermal conductivity of fluid "i," )
Btu/(hr)(ft)(°F) Nu(i’ Average or effective overall
kyw Thermal conductivity of circular Huesrll numbe.r o e By helt
b walll Btu/(hr)(ft)(°F) exchanger design equation
) e e or et cxchaneer 4 Distance normal to heat transfer
length measured from inlet, ft BiiacE ansleguBE L (11)
" z Axial distance measured from
q. Heat flux density at heat transfer . .
i e el Btu/(hr)(ftz) exchanger inlet; see equation (14)
= :
T Radial distance from center of Heatlexchangen eliceuie il
circular tube, ft €. Local temperature of fluid "i,"
t; Local temperature of fluid "i," °F (t - to1)/tg
t Equilibrium temperature, °F £g; Dulk temperature of Huid Hif
[oe] ’

(tBi - tor)/At
tpi Bulk temperature of fluid "i," oF Bi 01 / 0

toi Inlet temperature for fluid "i," °F (0] Effectiveness coefficient; see
At, Inlet temperature difference, equations (54)
tyo - tios °F w?  (KH)/2

uj Local velocity of fluid "i," ft/hr
uj Average velocity of fluid "i," ft/hr

Overall heat transfer coefficient Subscripts
based on heat transfer area of
channel "i," Btu/(hr)(t?)(°F)

W; Mass flow rate of fluid "i," lbm/hr

1, identifies circular tube

-
1]

2, identifies annular space
y Distance normal to heat transfer

surface of annular space, measured
from insulated wall, ft

a: Thermal diffusivity of fluid "i," ft?/hr



THE GRAETZ PROBLEM IN COCURRENT-FLOW,
DOUBLE-PIPE, HEAT EXCHANGERS

by

Ralph P. Stein

ABSTRACT

It is shown that the Graetz Problem pertaining to the
cocurrent-flow, double-pipe, heat exchanger can be studied
analytically by extensions of familiar mathematical tech-
niques. These techniques are used to derive a formal ana-
lytical solution of the problem, and numerical results are
obtained. The results demonstrate the following: (1) Fully
developed, laminar-flow, heat transfer ("film") coefficients
in cocurrent-flow, double-pipe, heat exchangers depend upon
the operating conditions of the exchanger, and their values
can be significantly less than the value corresponding to the
boundary condition of uniform wall temperature. (2) Use of
customary design equation applied to laminar-flow heat ex-
changers can result in large errors even when the heat
transfer is fully developed, and these errors will be largest
when actual, fully developed, heat transfer coefficients are
used.

I. INTRODUCTION

Analytical investigations of steady-state heat exchange between a
fluid in fully developed laminar flow and the walls of the duct through which
it flows constitute one of the most frequently occurring types of study pub-
lished in the heat-transfer literature. Since Graetz, in 1885, appears to
have been the first to publish such an investigation, the general category
of these studies is referred to as "Graetz Problems." The classical Graetz
Problem considers fully developed laminar flow through a uniform-
temperature duct of circular cross section. Heat conduction within the
fluid in the direction of flow, and heat generation resulting from viscous
dissipation, are assumed to be negligible.

Many extensions of the classical Graetz Problem have appeared inthe lit-
erature since Graetz's paper.(z‘) The extensions include (1) replacing the uni-
form duct-temperature boundary condition with a uniform heat fluxat the duct
walls; (2) removing the assumptions of negligible axial-fluid heat conduction and



viscous dissipation; (3) replacing flow through a circular duct with flow
through a duct with a cross section approximated by the space between in-
finitely wide, parallel planes; (4) illustrations of the use of Duhamel's
theorem and superposition to generate solutions for nonuniform tempera-
ture and heat-flux boundary conditions in various combinations. One of the
most recent of these extensions is that of Lundberg et al. 3) who studied
flow through annular spaces of various diameter ratios with all possible
combinations of specified temperature and heat-flux boundary conditions.

The "fully developed, turbulent-flow" Graetz Problem has received
considerable attention, as well as the "nonfully developed flow" case. Ducts
with "two-dimensional" cross sections have also been studied.

With one exception, all of these extensions consider boundary con-
ditions of specified duct wall temperature or heat flux. The exception is
the somewhat more general condition of specifying that the wall tempera-
ture is proportional to the heat flux at the wall, and was used by Schenk
and Beckers(8) to approximate the case of heat transfer from the fluid
through the duct wall to a uniform temperature environment. From a prac-
tical point of view, the specified wall-temperature boundary condition is
the least important, since its use as a representation of an actual condition
in a duct is applicable only for certain special limiting cases. Boundary
conditions that specify heat fluxes apply more directly to many actual situ-
ations - e.g., in coolant passages of nuclear reactors. But what about the
conditions that would apply to double-pipe heat exchangers? Except per-
haps for certain special circumstances, none of the three types of boundary
conditions mentioned above would be truly applicable.

In view of the practical importance of heat exchangers in general,
it is perhaps surprising that investigations of applicable Graetz type
problems are not contained in the literature. As will be seen, the formu-
lation of such a problem for a cocurrent-flow, double-pipe, heat exchanger
is relatively simple. Why then has this type of extension of the Graetz
Problem not been investigated? A possible answer to this question appears
to be related to the applicability of the classical mathematical techniques
used to obtain analytical solutions to Graetz and similar problems. It is by
no means immediately apparent that these same techniques can be applied to
the more complicated "two-region" problem that results for the double-pipe
heat exchanger.

The principal purpose of this paper is to show that these familiar
mathematical techniques are applicable to the cocurrent-flow, double-pipe,
heat-exchanger Graetz Problem, although in somewhat unfamiliar form. Use
of these techniques will then be illustrated by computations of fully developed
heat-transfer coefficients, and their dependence on the operating conditions
of the exchanger will be briefly studied. In addition, a new heat-exchanger
design quantity, called the "effectiveness coefficient," will be introduced, and
its significance illustrated.



II. SOLUTIONS OF GRAETZ PROBLEMS

Graetz problems are formulated by expressing the heat-convection
equation in a convenient coordinate system with appropriate simplifications,
boundary conditions, and an "initial" condition describing the fluid tempera-
ture distribution at the inlet to the duct. With a few recent exceptions, and
when interest is directed at conditions that are not too close to the duct in-
let, formal solutions are obtained by the classical method of separation of
variables. With the three types of boundary conditions mentioned in
Section I, a familiar Sturm-Liouville system results, the solution of which
provides an infinite sequence of orthogonal functions (eigenfunctions) with
corresponding eigenvalues. Expansion of the initial condition as an infinite
series of the eigenfunctions gives the coefficients necessary to complete the
solution.

Except for certain cases with the space between infinite parallel
planes,(7) a general solution of the Sturm-Liouville equation of the system
is not available in terms of known tabulated functions. As a result, approxi-
mation techniques are necessary in order to obtain numerical results from
the formal solutions, and several of these are reported in the literature.

As will be seen, separation of variables applied to the cocurrent-
flow, double-pipe, heat-exchanger problem results in the equivalent of a
Sturm-Liouville system consisting of two Sturm-Liouville equations coupled
at a common boundary. The coupling conditions yield boundary conditions
that are not familiar for a Sturm-Liouville system. It will be shown, how-
ever, that solutions of the two-region problem form an infinite sequence of
functions with corresponding eigenvalues, and with the equivalent of an
orthogonality condition defined over both regions. The two-region orthog-
onality condition makes it possible to expand the initial condition for each
region as an infinite series of appropriate eigenfunctions, thereby deter-
mining the coefficients necessary to complete the formal solution by
separation of variables.

Recently, Nigram and Agrawal(é) published accurate approximate
solutions of the classical Graetz Problem for the space between infinitely
wide parallel planes which were obtained by use of Biot' s(1) variational
formulation of the heat-conduction equation. With this approach, approxi-
mations are made directly to solutions of the heat-convection equation
rather than to the Sturm-Liouville system resulting from the separation
of variables. The accuracy of the approximation, however, is not always
easy to judge. The technique is also applicable to the heat-exchanger
Graetz Problem, and is presently being studied for this purpose.



III. FORMULATION OF HEAT EXCHANGER PROBLEM

The usual double-pipe heat exchanger consists of two concentric
circular pipes with fluids flowing through the annular space and the central
tube. In a cocurrent-flow exchanger, the fluids enter their respective flow
channels at the exchanger inlet with different temperatures, transferring
heat through the common wall as they flow in parallel along the length of
the exchanger. A schematic diagram of this simple type of heat exchanger
is illustrated in Figure 1, which also identifies some of the nomenclature
to be used.

Fig. 1

Double-pipe Heat Exchanger,
Schematic Diagram

For the purpose of analysis, the following idealizations are made:

(1) At the inlet to the duct, the temperature distributions within
the fluids are uniform.

(2) Physical properties are temperature-independent.

(3) Frictional heating (viscous dissipation) is negligible.

(4) Longitudinal heat conduction in the heat exchanger walls is
negligible.

(5) Longitudinal heat conduction in the fluids is negligible.

(6) The velocity distributions within the fluids correspond to fully
developed laminar flow.

(7) The annular space of the exchanger is narrow in the sense that
it can be approximated by the space between infinitely wide par-
allel planes.

The above idealizations are familiar ones and need little discussion.
Removing all but the second and sixth results in only slight to moderate ad-
ditional complications.

Let quantities associated with flow in the circular tube be identified
by subscript "1," and those associated with flow in the narrow annular

space by identified by subscript "2." The appropriate steady-state convec-
tion equations are then

13 (. o) wul)ay
ror\"3r /)" a, ok’ (1a)

ty(r, 9), O= 2 =ay,



for the circular tube, and

Dty _ uply) otz
_ otz ]
2 %, OF 8,

taly, £), 0=y = a,,

for the narrow annular space. In the above, a represents the thermal dif-
fusivity, and u the local fluid velocity in the axial or # direction. For
fully developed laminar flow,

28 [1 - (r/a,)?], (2a)

)

and

Uz

6T,(y/2,)[1 - (v/27)], (2b)

where the overscore indicates the usual volumetric-flow average velocity.

If the directions of r and y are as indicated on Figure 1, application

of the heat-flow boundary conditions results in

|
S il 0, (32)
ot,
— = (] (3b)
oy [y=0
and
ot, ot,
g 2h A e (4)
a; T i (a-l ) 2 éy —

where k represents the thermal conductivity, and b the thickness of the
circular tube wall. A fourth boundary condition is obtained by accounting
for heat conduction through the wall. For this purpose, the familiar log-
mean conduction equation is written as

C R e el (5)

G r=a, b!
with
fslio= 2 fn(1 +b/a;)

b[1 - (1/2)(b/2,) +(1/3)(b/a;)?+---]. (5a)

Ll
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Finally, the "initial" condition is written as

t)(r,0) = to (6a)
and

t,(r,0) = toz (6b)

Equations (1) through (6) represent a formal statement of the
cocurrent-flow, double-pipe, heat-exchanger Graetz Problem. An additional
relation, implicit in the above formulation and expressing a simple heat bal-
ance, is also of interest. To write this relation, the heat-content mean or
bulk temperatures tg, and tg, are defined in the usual manner by

z B tyrd 7
= u rar,
tg, alq, S s (7a)
and
a
p— 1 Z
tp, = a5, uptzdy. (7b)
0

The heat-balance relation is then written as
Wity - ta) = c,Wy(toz - tgy). (8)

Dimensionless Formulation

It is convenient at this point to introduce a dimensionless formula-
tion, and then restate the problem in purely mathematical form. This will
serve not only to simplify the nomenclature, but also, as the equivalent of
a dimensional analysis, to assist in identifying the important parameters
of the problem.

First, note that as the heat-exchanger length increases without limit,
both fluid temperatures must approach an equal and uniform equilibrium
value, t,. From equation (8),

tew = to + [H/(1+H)]At,, (9)

where

E CZWZ/(Clwl)'
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and
Aty = toz - tor-

The heat-capacity flow-rate ratio, H, is a familiar one in heat-
exchanger analyses and will be retained as a dimensionless parameter.
Equation (9) suggests the dimensionless temperature

2 = (ti - tor)/Ato, = (10)

The following dimensionless space variables are now introduced:
dimensionless distances x, normal to the heat-transfer surfaces, defined by

== ey (11a)
for the circular tube, and
x = Y/a-z (11b)

for the annular space; and a dimensionless length z, referenced arbitrarily
to the properties of channel "1," defined by

z = 0 b/(Tad). (12)

Note that 0 = x =1, with x = 1 identifying the heat-transfer surface for

all channels,andtherefore subscripts are not required. Note also that
€,(x,z) now replaces t,(r,£) and t(y,£) and that £,(x,0) = 0, while £,(x,0) = 1.
Further, from equation (9),

) (13)

gy ST H

The dimensionless length z can be expressed in more familiar terms
by introducing the Peclet number defined by

IDHIEE]
Be— 1—,
1 0"1

where Dj is the hydraulic equivalent diameter, equal to 2a; for both channels.
Introduction of the Peclet number into equation (12) results in an alternate
definition for z given by

4 [ 4
. 5;1(31) (14)

The inverse of z is proportional to the Graetz number.



Substitution of the dimensionless variables £;, x, and z for their

dimensional equivalents in the differential equations and boundary conditions
given by equations (1) to (6) results in the following dimensionless mathe-

matical statement of the problem.

where

Differential Equations

32k, 3¢
axz = (ngz(x) g (ISb)

Boundary Conditions

2—6;’: S0 1= (16)
K%L*Z_%f"; (17)
o,

Ko 55|, * Bi1:2) - £,(1.2) = 0. (18)
Initial Conditions

&(x,0) = o, (19a)
Eox,0) = 1, (19b)
gilx) = 2(1-x?), (20a)
g2(x) = 6x(1 -x), (20Db)
@? = (1/2)KH, (21)
K = (ky/a))(ay/kp)(1+ b/a;) 72, (22)

Ky, = (k/a)(b/ky,). (23)

The bulk temperatures in dimensionless form become

€py(z) = Z/Iglélxdx, (24a)
0



1
€p,(2) =fg2€zdx, (24b)
0

with the heat-balance relation

Em - Hl-Eg) (25)

The simple heat balance also implies the relations

o€, 1 dég,

gl, S dm (26a)
and

agz) d¢

e B

x|y ‘”ZWZ’ 250)

which can be obtained directly from equations (15) by integration with re-
spect to x.

The parameter H is a familiar one in heat-exchanger analysis, as
mentioned previously. The parameters K and K_ are not familiar ones but
may be given simple physical significance when interpreted as relative ther-
mal resistances. Thus, if the ratio al/kl is considered as a measure of the
thermal resistance for heat flow to or from channel "1," K can be inter-
preted as the thermal resistance for heat flow to or from channel "2" rel-
ative to channel "1." Similarly, K, can be interpreted as the relative
thermal resistance of the exchanger common wall.

Equations (15) to (19) indicate that the dimensionless temperature
distributions ﬁi(x,z) depend exclusively on the three dimensionless groups
H, K, and K_ in the sense that once these groups are assigned values, the
mathematical solution is determined. Thus it is to be expected that quan-
tities such as heat-exchange rates and heat-transfer coefficients, when
expressed in appropriate dimensionless forms, will also depend on H, K,
and K .

Heat Transfer Coefficients

The local, tube-side, heat-transfer coefficient is defined in the

usual manner by

ot,
T
or |r=a,

W = S e



which, in dimensionless form, becomes

3¢,
2 P
=

Nu,(z) = m (27Db)

where Nu; is the Nusselt number defined by
Nu, = Djh, /k,.

The same relations also apply to the local, annular-space, Nusselt
number when subscripts ""1" are replaced by subscripts "2."

Use of equations (26) gives the following somewhat more convenient

relations:

ngl

_ dz
5 X e e e =

208 -——ngZ

= dz
R s ey frTer (250

The overall heat-transfer coefficient, based on the heat-transfer area
of the tube side of the exchanger, is defined by

3t
” S r=a,
Uy (4) = tmd) - (D)’ (29a)

which, in dimensionless form becomes

-
0
Nuf(z) = 4) (29b)
ng(Z) = g’Bl(Z)
where
g - DI



The quantity Nuf is an overall heat-exchanger Nusselt number based on
tube-side properties. A more convenient expression for Nuf results upon
use of the heat-balance relations, equations (25) and (26); viz.:

ngl

dz

IR ET:
e

Nuj(z) = (29¢)

It is relatively simple to show that the familiar additive thermal-
resistance concept for computing overall heat-transfer coefficients can be
expressed in dimensionless form as

1 1 Ky K

TR T e e

and is consistent with the relations given for the various Nusselt numbers.

Heat Exchanger Effectiveness

The customary heat-exchanger effectiveness € is defined as the ratio

of the actual rate of heat transfer between fluids for a particular heat ex-
changer to the rate of heat transfer for a similar exchanger with infinite
heat transfer area. For the cocurrent-flow, double-pipe exchanger, equa-
tions (10) and (13) lead to the simple relation

e = [(1+H)/Hl g, (30)

so that equation (29c) can be written as

d I sl
—&;ﬂn(l -€) = - T Nul(z). (29d)

If Nu} is assumed to be independent of z, and equation (29d) is integrated
from z = 0 to any value of z, a dimensionless equivalent of the customary
heat-exchanger design relation results, viz.:

e =1 - exp{-[(1 +H)/H]|(Nu?)z}, (31)

where mf represents the value of Nul assumed constant during the

integration.

17



IV. SOLUTION BY SEPARATION OF VARIABLES

Separation of variables applied to equations (15) through (18) leads
to consideration of a solution in the form

Gz = TR ) CpEn(x)e (32a)
n-—1
€,(x,2) = i ChEzn(x -Xlzqz: (32b)

where the functions E;;, and E,, must satisfy

1 d
= (xEjp) + g \E;m = 0, (33a)
and
2
ddEin + (l)zgzk%EZn = o) (33b)
x

with the boundary conditions

E|,(0) = O, (34a)
E4n(0) = 0, (34b)
KE, (1) + Ejp(1) = 0, (35)
KwElh(1) + E (1) - Ep(l) = 0. (36)

In the above, primes denote differentiation with respect to x.

Since g, and g, are well-behaved functions of x, there is no doubt
that solutions for E, and E,, exist. To show that equations (32) rep-
resent a solution of the two-region boundary-value problem stated by
equations (15) to (19), a relationship for the A\, must be obtained, and it
must be demonstrated that the coefficients can be determined so as to
satisfy the initial conditions in the form

o= R
H

T CnEin(x), (37a)

A
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and

H [e2]
=Tt Zl CnEgzn(x). (37b)
n=

The homogeneous ordinary differential equations for E,, and
E;,, together with the homogeneous boundary conditions given by equa-
tions (34), (35), and (36), constitute what might be called a "two-region"
Sturm-Liouville problem. It will now be shown that this system of dif-
ferential equations with boundary conditions has properties analogous
to those of the more familiar Sturm-Liouville system, thus making it
possible to determine the coefficients Cp so as to satisfy the initial con-
ditions of the heat-exchanger Graetz Problem.

The Eigenvalue Equation

Let F(X,x) represent the solution of equation (33a) with Fy(X,0) = 0,
and let G(\,x) represent the solution of equation (33b) with G4(),0) = 0,
where the subscript "x" denotes partial differentiation with respect to x.
Thus, with A()\) and B(\) arbitrary "constants" which might depend on
A AF (\,x) and BG(\,x) also satisfy their respective differential equations.
The boundary conditions given by equations (35) and (36) then require that
A()\) and B()\) be chosen so that

KF. (M 1)A + Gx(A,1)B = 0, (38a)
and
[KwEx(X\,1) + (A, 1)]A - G(X,1)B = 0. (38b)

For this system of simultaneous homogeneous linear algebraic equations
to have nonzero solutions for A and B, the coefficient determinant

KFx(X,1) Gx(X,1)
KwFx(A,1) + F(A, 1) -G(\,1)

must be made equal to zero by proper choice of A. This gives the eigen-
value equation

B, 1)G, (1) + KB, (0L 1)G(, 1) + KeFyx(X,1)G (1) = 0. (39)

From physical considerations, e.g., equation (13), and inspection
of the assumed form of solution, equations (32), only real nonzero values
of A are required. Further, it should be possible to arrange the required
roots, An, of equation (39) in order of increasing size as



2 2 2 2
i, ML Gl RNy

and they should be (denumerably) infinite in number. For the more familiar
Sturm-Liouville Problem (i.e., in a simple, finite, single region), these
properties of the A;; have been established rigorously with restrictions
rarely of importance to physical problems. It should also be possible to
establish these properties for the two-region problems, but this has not
been attempted. Instead, it is noted that if the roots, Ap, of equation (39)

do not have the desired properties, then solutions of the form given by
equation (32) are not proper.

The Eigenfunctions

Equation (38a) results in

Fx(A,1)

B(A) = -K GO D)

A(N).

Since the system is homogeneous, either A(X) or B()X) can be chosen
arbitrarily. The choice,

AR = G, (A1),

results in convenient symmetry, for then the eigenfunctions E,, and E,,
can be represented by

Ein(x) = GxOn, 1)F(\p,x), (40a)
and
Em(x) = —KFX(Xn,l)G(xn,x), (40b)

and clearly satisfy the two-region Sturm-Liouville system described by
equations (33) to (36).

"Orthogonality" of the Eigenfunctions

The equivalent of an orthogonality condition for the E,;, and E,,
will now be established. The differential equations (33) are first manipu-
lated for n = i and n = j in the manner used to derive properties of the
familiar Sturm-Liouville system. Equation (33a) is written for n = i, and
then for n = j, with i ;/ j- The equation for n =i is multiplied by E,;,
and the equation for n = j is multiplied by E,;. The two resulting equations
are then subtracted, and the following is obtained:

d d

Eij 3 OB - By o (BY) + (0 - M)giByByyx = 0.



Use of the identity

d d d
TR [X(Ele'li - EliE'lj)] = Ejj T (xEji) - Eyj = (XE'lj)

and multiplication by dx enable the above to be written as
d[X(Ele'li B EliE'lj)] i (Xi = X;)glEliEledx =

Integration between x = 0 and x = 1 results in
1
(a3 - xi)/ xgEEjdx = Ej(1EY(1) - Ei(1)Ef(1). (41a)
0
In a similar manner, equation (33b) gives
1
wz(xg - xi)f g2Ez1Ezjdx = Epj(1)E3i(1) - Eai(1)Eg5(1). (41b)
0

The integration to obtain equation (41b) uses the boundary condition
Ei-(0) = 0.

The integrals of equations (41) can be related to each other by using
the coupling boundary conditions at x = 1. Thus, equation (35) produces

sn(1) = -KEjn(1),
and equation (36) leads to
Ean(1) = Ejp(1) + KwEjn(1).
Use of these conditions results in the relation
Ej(VES(1) - Epi(1)E4(1) = - KIEj(1)E(1) - Ey(DE(1)]

which, with equations (41), implies that
1 1
w?‘/ g2EziEpjdx + K/ xg EjjEjjdx = 0.
0 0

With w? = %KH, the above can be written as

21
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1
f (2xg EiEyy + Hg,E,iEzj)dx = 0, 1R (42)
0

Equation (42) is the equivalent of an orthogonality condition for the
eigenfunctions E,, and E,,. Note, however, that the familiar correspond-
ence of an orthogonal set of functions to the concept of an orthogonal set
of vectors in a space of denumerably infinite dimensions is no longer
apparent from equation (42). The correspondence can be retained by re-
placing x by 1 - x in region 1, and by x - 1 in region 2, and rephrasing the
problem accordingly in the single region defined by -1 = x = 1. This type
of formulation might be more convenient for theoretical investigations but
offers no immediate advantage for the treatment given here.

For i = j = n, equations (33) lead to a normalizing factor defined by

1
Np =f (2xg,E%,+ Hg,EZ, )dx. (43)
0

Note that E,;, = E,, = 1 is a solution of the two-region Sturm-
Liouville problem corresponding to Ap = 0, and that

1
f (2xg,E); + HgyEpj)dx = 0, i # 0.
0

Thus to complete the set of functions E,, and E,p, the case of n = 0 with
X =0, and E |y = E;q = 1 must be included. Also, application of equation (43)
gives

Ng = 1+ H.

Expansions of Arbitrary Functions

Let f),(x) and f,(x) be arbitrary functions defined in regions 1 and
2, respectively, with 0 = x < 1. To avoid concern about the validity of the
operations to be performed with these functions, assume that they are con-
tinuous in their respective regions. Consider the expansions

f(x) = Z CnE n(x); (44a)
n=o0

f,(x) Z CpEop (x). (44b)
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Multiply the first expansion by 2xg)E,jdx, and the second by Hg,E,jdx. Add
the resulting expressions, and integrate between x = 0 and x = 1, using
equations (42) and (43). The following formula for the C, results:

1
1
Cn = N_f [2xg,Enfi(x) + Hg,Enfy(x)ldx. (45)
nJo

For n = 0, this becomes

1l

Cei= 5

/ [nglfl(x) + Hg,f,(x)Jdx. (46)
0

Thus, the expansions of equations (44) are completely analogous to repre-
sentations of arbitrary functions by a generalized Fourier series, at least
formally.

Completion of Solution of Heat-exchanger Graetz Problem

The solution of the cocurrent-flow, heat-exchanger problem in the
form of equation (32) can now be completed. To satisfy the initial conditions
as required by equation (37), the expansions of equations (44) are written
with f)(x) = 0 and f,(x) = 1. Thus, equation (45) results in

1

Cph = g:E,ndx. (47)

Nno

Also, since

1
/ g.dx = 1,
0

equation (46) leads to
Co = H/(1 + H), (47a)
as required by equations (32).

It will be convenient for later application to define the quantities

1
Bin = 2/ xg | Ejndx, (48a)
0
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and

1
Bon :f g, E,ndx. (48b)
0

Application of equations (24) and (25), i.e., the heat-balance relation, to
equations (32) results in

Bin = -HBpn» n}/ 0.

(Note that the same relationship between the Bjj is implied by the orthog-
onality expression.) Thus, equation (47) can be written as

C, = HB,,/Np; (49a)

Ehe =t OB /N0 (49b)
The integrations defining B), and B, can be completed with the assistance
of equations (33) and the boundary conditions. The following equations
result:

By = = A0 (50a)
and

Ban = - Efp(1)/(@®2). (50b)

Fully Developed Heat-transfer Coefficients

For sufficiently large values of z, all but the n = 1 terms of equa-
tions (32) can be neglected. Application of this "large z" solution to equa-
tions (28) and (29c) give the following asymptotic or fully developed values
of the various heat-transfer coefficients:

Nu,(») = AB;,/[By, - E;i(1)]; (51a)

Nu,() = KHAB,,/[B,; - E;,(1)]; (51b)
and

Nuj(e) = [H/(1 + H)]X2. (52)

Heat Exchanger Effectiveness

Application of equations (32) and (49) to the defining relation for the

dimensionless bulk temperature E’Bl’ and introduction of equation (30), re-
sult in the expression
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€(z) = Z -BNi N (53)

for the heat-exchanger effectiveness. Multiplying and dividing by quantities
related to the first eigenvalue, and using equation (52) result in the following
form of equation (53):

€ =1- ®(z)e_>\€z (54a)
= 1 - ¢(z)exp {- [(1 +H)/H]Nuj(x)z}, (54b)

where

= s 2 2
oz = 1;IH 5 ?I_l_: R - M)z (55)

1

n

n

Comparison of this form with the customary heat-exchanger design re-
lation as given by equation (31) shows that the two will give approximately
equivalent results when Nul ~ Nul(w) and ¢(z) = 1.

A useful relationship for the maximum variation of ¢(z) can be
determined. First note that for sufficiently large z,

Lim ¢(z) = ¢(«)

Zi ==

= [(1+H)/H](BL/N), (56)
while the requirement that € = 0 when z = 0 gives
#(0) = 1.

Since B}, and N, [see equation (43)] are positive numbers, and An < Ap+,
#(z) must decrease monotonically with increasing z. Thus

P() = ¢lz) = 1.

This relationship, together with appropriate values of Nu(), can be used
to test the accuracy of the customary heat-exchanger design equation

[equation (31)].
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The Effectiveness Coefficient

When ¢(z) is significantly different from unity, it can become an
important quantity for heat-exchanger design. For this reason it is called
"The Effectiveness Coefficient." The quantity

d(w) = [(1 +H)/H]BS/N,) (57)

is the "Fully Developed Effectiveness Coefficient" for the cocurrent-flow,
double-pipe, heat exchanger.



V. THE PLUG-FLOW CASE

If the velocity distributions u,(r) and u,(y) are taken to be uniform,
rather than parabolic, then g, = g, = 1, and the differential equations for
the eigenfunctions, i.e., equations (33), have solutions in terms of familiar
elementary functions. This simple velocity distribution represents the
idealization of plug- or rod-like flow and has been used as a basis for an
analysis of heat transfer between lit(luid metals in turbulent flow in cocurrent-
flow, double-pipe, heat exchangers. 9) Solutions for the appropriate, two-
region, boundary-value problem - i.e., equations (15) to (19) with g, =g, = 1 -
were obtained by Laplace transform techniques, and thus are available for
comparison with solutions obtained by separation of variables.

Recall that F(\,x) represents the solution of equation (33a) with
F4(X,0) = 0 and that G(X,x) represents the solution of equation (33b) with
Gx(X,0) = 0. For g, =g, = 1,

F(,x) = Jo(Ax); (58a)
and

G(M\,x) = cos (wix). (58b)

Thus, if it is noted that

1

R (=) AT, (%),
and

Gx(\,x) = -wAsin(wyx),

the eigenvalue relation equivalent to equation (39) becomes, after slight
rearrangement,

Jo(M)sin(w)) + (B/w)T,(\) cos(@w) - KyAJ;(A) sin(wr) = 0. (59)

The eigenvalues are given by the positive nonzero roots of equation (59).
Application of equations (40) determines the eigenfunctions for the plug-
flow case to be

En(x) = -wip sin(@in)Jo(Anx), (60a)
and

Epn(x) = KAnJ1(Ap) cos(@wrpx). (60b)

21
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Substitution of equations (60) into equations (43) and (47) gives the
required coefficients C,, and completes the plug-flow solution in the form
of equations (32). It is relatively simple to show that the solution obtained
by separation of variables is equivalent to the same form of solution ob-
tained by Laplace transform techniques. For example, application of
equations (50) and (51) results in, for the plug-flow case,

2237, 00)
B2l &7 500, A e
and
Z(wxl)z sin(wX,;)
Nuy(w) =

sin(2,) - wk, cos(wX,) ’

with A, denoting the least, nonzero eigenvalue as determined from
equation (59). These relations are the same as those given in reference (9).
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VI. THE LAMINAR-FLOW CASE
For the laminar-flow case, i.e., with
g1 = 2(1 -x%),
and
g2 = 6x(1 -x),

useful solutions for the differential equations (33) are not known in terms
of tabulated functions. Thus, solutions by power-series representation of
E), and E,, or by the use of approximation techniques, are necessary.

Several techniques are available for approximating eigenvalues
and eigenfunctions, most (if not all) of which would be applicable to the
two-region Sturm-Liouville Problem defined by equations (33) to (36).
With the eigenfunction solution available for the plug-flow case, a con-
venient basis for an approximation method is to represent the laminar-
flow eigenfunctions as a linear sum of plug-flow eigenfunctions. In this
way the boundary conditions - i.e., equations (34) to (36) - are automatically
satisfied. The coefficients multiplying each term in the sum are then de-
termined so that the differential equations - i.e., equations (33) - are ap-
proximately satisfied. After some experimentation with other methods -
especially the use of polynominal approximations for the eigenfunctions in
a variational formulation of the problem (see Appendix B) - approximation
by a linear sum of plug-flow eigenfunctions was chosen for detailed study.

This type of approximation method for eigenfunctions is a familiar
one in perturbation analyses of the wave equations of theoretical physics.
In such applications, the quantities 1 - g, and 1 - g, would represent small
perturbations from a system for which the eigenfunctions and eigenvalues
are known. The procedure was first applied to Graetz Problems by Mill-
saps and Pohlhausen(4) with considerable success. Since the "perturbation"
represented by the difference between a uniform velocity distribution (plug
flow) and a parabolic velocity distribution is not really small, the procedure
requires use of more terms in the sum than is usual in perturbation calcu-
lations. As a result, the technique when applied to Graetz-type Problems
is not suitable for hand calculation, but does result in a procedure which is
convenient for high-speed digital machine computation.

The procedure, as applied to the two-region Sturm-Liouville Problem
described by equations (33) to (36), is developed in two different ways in
Appendices A and B. In Appendix A, the orthogonality of the plug-flow solu-
tions is used as the basis; in Appendix B, a variational formulation of the
two-region Sturm-Liouville Problem is used.
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The approximation by a linear sum of plug-flow eigenfunctions can

be written as

Ejn(x) = z anju; (%), (61a)
j:O
and
(G~ Z anjvj (%), (61b)
j:O

where u; represents the jth eigenfunction for region "1" for the plug-flow
problem, and v; represents the same for region "2"; i.e., uj is given by
equation (60a), and vj by equation (60b). "Best" values of the coefficients
anj, as well as of the laminar-flow eigenvalues A,, for n = Lz asaantey

are obtained as solutions of a corresponding eigenvalue problem related to

a homogeneous set of r + 1 linear algebraic equations with apj as the un-
knowns. Details are presented in Appendix A. The corresponding eigen-
value problem is a relatively standard one for a high-speed digital computer,
and solutions with r as large as 10 can be obtained quite rapidly.

Initially it was hoped that this approximation technique would make
it possible to explore heat-exchanger operation over the entire likely range
of the parameters H, K, and K. It was discovered, however, as discussed
further in Appendix C, that convergence was not sufficiently rapid or uni-
form. In most instances the approximations exhibited oscillatory behavior
with increasing r, making it difficult to judge the accuracy of results beyond
the third significant figure, even for r as large as 16. Because of this, a
compromise was necessary which limited the range of parameters covered,
and allowed consideration of only those quantities related to the first and
second eigenfunctions.

The results obtained, including an indication of their accuracy, are
listed in Tables I, II, and III, and discussed with respect to general trends
in Section VII.

In most cases, the accuracy appears to be of about the same order
as to be expected from a precision electronic analog-computer solution of
equations (33) to (36). Since use of an analog computer should permit a
more rapid coverage of a much larger range of the parameters, and should
allow removal of the narrow annular space idealization with only slight
additional complications, this method of computation is being explored.



Table I

QUANTITIES RELATED TO FIRST EIGENFUNCTION

Ky K H A% E; (1) -Bn N,

0 1 OF 10.94 0.3091 0.0389 0.0806
0 1 0.5 5.81 0.426 0.497 0.981

0 1 1 4.134 0.140 0.846 IS 717

0 2 (0125 4.336 0.191 0.803 2028

0 0.5 05 6.75 (0), @l 0.266 0,331

0 0.1 0.5 T.52 0.106 0.057 0.0184
0 0.01 075 7.688 0.01150 0.00579 0.00020
0 0.1 2 4.78 0.118 0.289 0.166

0 o)1l 1 5.89 0.124 0.139 0.057

0 OF 0.1 1027 0.0353 0.00360 0.00099
0.1 gl 0.5 7.02 0.0925 0.0608 0.0182

(0147 (o1l (01,05} 6.530 0.0784 0.06389 0.0181

Note: The results tabulated above are uncertain in the last digit

given.

Table II

QUANTITIES RELATED TO SECOND EIGENFUNCTION

Kw K H >‘§ Elz(l) -By, N,
0 1 0.1 30.4 0.39 D097 0.24
0 1 059 18.32 -0.38 0167 0.55)
0 1 1 16.42 -0.24 0.056 0.11
0 2 0.5 15216 -0.34 0.049 0.16
0 0.5 .5 21.7 -0.059 0.22 0.60
0 (o), 1t 0.5 £5.17 0.12 0.078 0.074
0 0,01 (0], 5 36.64 0.02 0.008 0.0009
0 gl 2 26.4 -0.0092 0. 17T 0.343
0 0.1 1 25052 0.078 0.14 (6)., 21l
0 0.1 0.1 35.7 0.062 0.007 0.003
0.1 0.1 a.5 23.20 07032 0.078 0.073
0.2 0.1 0.5 21.21 -0.036 (0 0)7/ 1L 0.065

Note: The results tabulated above are uncertain in the last digit

given.
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Table III

FULLY DEVELOPED NUSSELT NUMBERS AND
EFFECTIVENESS COEFFICIENTS

Ky K H Nu, () Nu, () Nu§ () ¢ ()
0 1 O] 1%22 545 2004 0.206
0 1 085 Gdls 5.08 #0388 0.751
0 1 1 3555 4.95 2.067 0.834
0 2 052 350 4.92 1.445 0.849
0 085 0.5 2.87 5.22 28250 0.644
0 0.1 035 2.63 5.4 2051 0.53
0 0.01 0.5 2.57 6 2.56 0.50

0 0.1 2 3.40 551 3.190 02550
0 0.1 1 3.107 5.5 2.943 0.674
0 0311 0.1 1.04 6 1.024 0.144
)l 01 0.5 2.78 55 2.340 0.608
0.2 0.1 0.5 2.931 5.6 2:176 0571/
NOTE: The results tabulated above are uncertain in the last digit

given.




VII. DISCUSSION OF NUMERICAL RESULTS

Since the principal intent of this report was to show that the
cocurrent-flow, double-pipe, heat-exchanger, Graetz Problem can be
studied by an extension of familiar mathematical techniques, the numerical
results obtained will be discussed only briefly.

The range of the parameters H, K, and Ky explored include those
values that are most likely for an actual laminar-flow, double-pipe heat
exchanger, but probably require some future extension for completeness.
Values of H usually will be near unity, values of K near 0.1, and values of
K less than 0.1. In unusual situations, values of H from 0.1 to 10 are con-
ceivable. With fluids on either side of the exchanger of significantly differ-
ent thermal conductivities, values of K could also span a large range. With
liquid metals, values of Ky could be significantly greater than 0.1, but
rarely greater than unity.

Fully Developed Heat Transfer Coefficients

Figures 2, 3, and 4, prepared from the results in Table III, show
graphs of tube-side, fully developed, heat-transfer coefficients as a func-
tion of exchanger operation. The heat-transfer coefficients have been nor-
malized with respect to the value appropriate to the boundary condition of
uniform heat flux at the tube wall. The normalized values were obtained
by dividing the tube-side Nusselt number by the uniform flux value of
4.36.(2) The normalized heat-transfer coefficient corresponding to the
boundary condition of uniform surface temperature is located on
the graphs for reference, and was obtained by dividing the appropriate
Nusselt number, 3.65,(2) by 4.36. Also shown on the graphs (by dashed
lines) are the comparable results obtained previously for the plug-flow
case.

T T A e W A ) e
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Fig. 3. Fully Developed, Tube-side Heat-
transfer Coefficients, Normalized;
Effect of Fluid Thermal Resistance
(Ky = 0)

Fig 2 Fully Developed, Tube-side Heat-transfer
Coefficients, Normalized; Effect of Heat
Capacity Flow Rate Ratio (K, = 0)
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The results are similar to those found for the plug-flow case, and
it can be surmised that the general conclusions concerning fully developed,
plug-flow, heat-transfer coefficients apply to the laminar-flow case also.
In particular, values of fully developed heat-transfer coefficients (1) can
be significantly less than those corresponding to the boundary condition of
uniform wall temperature; (2) depend upon the operating conditions of the
exchanger as characterized by the parameters H, K, and Kg; and (3) are
influenced most by the heat-capacity flow-rate ratio H, especially when it
is less than unity. For the plug-flow case, it was demonstrated that the
heat-transfer coefficient can never be larger than the corresponding
uniform-flux value, and that this value is approached as H, K, and Ky, in-
crease without limit. The graphs suggest that this general result applies
to the laminar-flow case also, although further analysis and/or computation
is required for verification.

Table III shows that over the range of the parameters explored,
the fully developed, narrow, annular-space Nusselt numbers vary
only slightly. The corresponding uniform-flux value pertains to laminar
flow through infinitely wide, parallel planes with one side insulated and is
equal to 5.39.(10) The values presented in Table IIl are all near this value,
and are larger only when they are indicated as uncertain. The parameters
H and K have been defined relative to the tube side of the exchanger. But
these parameters can also be defined relative to the annular space side of
the exchanger, in which case values of H and K as listed in Table III
would simply be inverted. Thus, a value for H of 0.1, defined relative to
the tube side of the exchanger, would be equivalent to a value of 10, when
defined relative to the annulus side. With this interpretation, the general
conclusions concerning the effect of the exchanger operating conditions also
apply to the results obtained for the annular space in that large values of
H and K result in fully developed heat-transfer coefficients close to, but

never larger than, the value corresponding to the boundary condition of uni-
form flux.
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Fully Developed Effectiveness Coefficients

Figures 5 and 6 are graphs of the fully developed effectiveness
coefficient ¢(») as a function of the parameters H, K, and Ky. Clearly,
¢(0) is significantly less than unity within regions of practical interest,
suggesting that it could be an important quantity for heat-exchanger design.
To illustrate the significance of this quantity, a calculation was made to
predict the required length of cocurrent, laminar-flow, double-pipe heat
exchanger to obtain a desired heat-exchanger effectiveness of 0.6. The
parameter H was taken as unity, K as 0.1, and Ky as zero. The results
obtained by use of the customary design equation [equation (31)] with Nu}
computed from fully developed, uniform surface-temperature, heat-transfer
coefficients, were compared with those obtained using equation (54). It was
found that ¢(z) = ¢(w) (i.e., the heat transfer is fully developed), and that the
customary design equation predicted a length 52% longer than required. For
H = 0.5, the error increased to 145%; for H = 2, the error decreased to
34%. For m? based on fully developed, uniform heat-flux, heat-transfer
coefficients, the errors were roughly halved; with Nu} taken equal to
Nu}(®) - i.e., based on the actual, fully developed, overall, heat-transfer co-
efficients - the errors increased to230% for H = 0.5, 75% for H = 1, and 42%
for H = 2. For an effectiveness of 0.8, however, the errorsin the customary
design equation were nearly negligible, except when using N—u? = Nuj ().
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Fig. 5. Effect of Operating Condi-  Fig. 6. Effect of Wall Thermal
tions on Fully Developed Resistance on Fully
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(E, = W) ness Coefficient

(H=0.5 K=0.1)

The effectiveness coefficient accounts for the high rates of heat
transfer occurring in the thermal-entrance region of the exchanger. The
customary design equation does not account for these high rates except,
perhaps, by use of a suitably increased, average, overall heat-transfer
coefficient. Thus, results using the design equation are best when Nud is
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calculated from fully developed, uniform-flux, heat-transfer coefficients,
since this basis for the calculation gives the largest value of Nuj consistent
with the design-equation assumption that it be independent of exchanger
length.

The results suggest that for sufficiently small values of the heat-
exchanger effectiveness (say less than 0.8), accurate design of laminar-
flow heat exchangers can not be based on the customary design equation,
even when the heat transfer is fully developed. The use of the effectiveness
coefficient and equations (54) for cocurrent flow offers a possible alternate
method of calculation, but is complicated by the dependence of ¢(x) and
Nu} () on the exchanger operating conditions. Future study appears
warranted.
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VIII. SUMMARY

It has been shown that the Graetz Problem pertaining to the
cocurrent-flow, double-pipe, heat exchanger can be studied analytically
by extensions of familiar mathematical techniques. When these tech-
niques were applied to the corresponding plug-flow problem, the analyti-
cal solution obtained agrees with a solution obtained previously by
Laplace transform methods. When the techniques were applied to the
laminar-flow problem, a well-known approximation method was used to
obtain numerical results of interest with moderate success.

Future work on the heat-exchanger Graetz Problem will explore
use of a precision electronic-analog computer to extend the results re-
ported here.
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APPENDIX A

A Formal Algebraic Solution for the Laminar-flow Eigenfunctions

To simplify the nomenclature somewhat, the plug-flow eigenfunctions

as given by equation (60) are represented by
un(x) = -wyy, sin(wyy)Io(y,x)
for region 1, and
vn(x) = KynJy(vy)cos(wy,x)
for region 2, where Yy, represents the eigenvalues given by the nonzero
roots of equation (59) with ¥ replacing X, and ni=e 1002 s [ oG ot

plete the set of functions, the definition uy = v, = 1 must be included.

The eigenfunctions of the laminar-flow problem, E)n and E,p, are
represented by the expansions of equations (44) written as

Ein(x) = Z anjuj(x), (A-1a)

=0

and

Eon(x) = anjVJ‘(x). (A-1b)

iNMs

J

These relations satisfy the boundary conditions of the laminar -flow, "two-
region," Sturm-Liouville Problem. When these expansions are substituted
into differential equations (33), and use is made of the relations

1 iy >

x dx (Xuj) - -Vjuj
and

d?v.

*J = ~wiyiv

dx? ’YJ Dk

the following equations result:
00
a

nj[gl(x)')‘; = “/;]Uj(x) = 0, (A-2a)

=

o
—
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and

jzo anj[gz(x)xf1 -vj]vj(x) = 0, (A-2D)

with Yo = 0 by definition. Equation (A-2a) is now multiplied by 2xuy, and
equation (A-2b) by Hvi. The results are added and integrated between

x = 0 and x = 1, making use of the orthogonality condition of equation (42).
The following equation results:

00

2 =

X ) aniPig = YianN(), (a-3)
J=0

12 = (0 11507

where
it
ij = f (nglukuj s ngx'k\'j)dx (A-4)
0
= ij’
and
1
) =/ (2xuf, + Hv)dx. (A-5)
0

Note that Py = 1 + H. For this system of homogeneous equations to have
nonzero solutions for the a,;, the A must be chosen so that the coefficient
determinant is zero. Since the determinant is of infinite order, setting it
equal to zero will in principle determine an infinite set of values of A,
corresponding to the eigenvalue equation for the laminar flow problem.
For each \p, there is a corresponding solution of equations (A-3) which
determines the ank, k =0, 1, 2, ... . Since the system is homogeneous,
one of the apk can be chosen arbitrarily. Thus, in a formal way, equa-
tions (A-1), together with equation (A-3), represent an exact algebraic
solution for the laminar-flow eigenfunctions, provided no difficulties are
associated with the convergence of equations (A-1) and of the infinite
determinant.

Successful use of the algebraic solution as a basis for numerical
calculations depends on proper convergence, and as a result can also serve
as a direct test of convergence. Thus, as an approximation, equations (A-1)
are applied by using only the first 1 + r terms, i.e., j=0,1,2, ... , 1,
and the behavior of the results is studied as r is increased successively.
The results of this type of study are described in Appendix C.
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APPENDIX B

A Variational Approach

Further confidence in the approximation based on the use of truncated
forms of equations (A-1) can be obtained analytically by showing that the
application of equations (A-1) to the equivalent variational formulation of the
two-region Sturm-Liouville Problem also results in equation (A-3). This
will now be demonstrated.

To obtain the variational equivalent of equations (33) to (36), arbi-
trary variations of the functions E;, and E,, are considered. First,
equation (33a) is multiplied by an arbitrary variation of E,,, denoted
by O0E -

Then, the following relation is used and multiplied by xdx:

1
BEn)E) = 5 0Ef,.

The result is integrated between x = 0 and x = 1, and the following is
obtained:

x=1 2 1
f OE,nd(xEl,) + é[%nf xglEindx]: 0. (B-1)
= 0

xX=0

The first integral on the left is integrated by parts and manipulated as
follows:

K= x=1
f 6Emd(xE'ln) = E'm(l)bEm(l) -f innd(éEln)
xX=0 ==0

=1

Ejn(1)8E,(1) —f x E{n8(dE )
x=0

1

I

1
E},(1)6E1n(1) —f xEjn6(El,)dx
0

1

1
Ein(1)eE, (1) - 6 [%f x (E'm)zdx].
0

Thus, equation (B-1) can be written as



Ein(1)5E (1) + 5{% fl [x;glEin - (Evm)ZJ xdx} = 0. (B-2)
0

In a similar manner, the variational equivalent of equation (33b),
; 1
Efn(1)8E;n(1) + 5{.2. f [w%ngén = (E;n)z]dx} = (B-3)
0
is obtained. Now, from the coupling boundary conditions, equations (35) and
(36),
8Ean (1) = 6E (1) + KyOEjn(1),
and
Etn(1)8E;n(1) = -KEin(1) [6E1n(1) + Ky Ein(1) ]

= RE (s EL s -;— KK, 0 E'm(l)]z. (B-4)

Combining equations (B-3) and (B-4) and using ®? = 1/2 KH result in the
following variational formulation of the two-region Sturm-Liouville
Problem:

1
AL 1
8 f {T“[bcglEin + HepBhn | - [x(Ein) + 2 (Bin) + KW(E'm(l)Z]} dx = 0.
0

(B-5)

Equation (B-5) can be used as a basis for an approximation technique
by choosing functional forms for the E;;, and E,; involving arbitrary con-
stants, as is done with the Rayleigh-Ritz method. "Best" values of the co-
efficients, as well as the Ap, result from minimizing (or maximizing) the
integral. For the application of interest here, equation (A-1) are chosen as
the approximating functional forms.

The nomenclature is first simplified somewhat by dropping the
subscript "n" and defining

1
I-= f [nglEi + ngEg]dx,
0

and
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1
1
e / [x(E{)z +E(Ez’)z]dx.
0
Thus equation (B-5) can be written as

a{l; I-7J-Ky [E'l(l)]z} = (),

and with equations (A-1) used to represent E, and E,, the minimization
requires that

2
%{% 1-7- KW[E;U)]Z}: 0, (B-6)
for k'=0,1; 2, ...

From equations (A-1), it is noted that

EZ = Z ajalu;jug,
ik

and

E; = Z ajakvivk,

ik
where the j,k notation under the summation sign means summation of all
possible products with j =0, 1,2, ... ,and k=0,1,2, ... . Then, using
Pjk as defined by equation (A-4) results in

I = Z ajakPjk.

ik
Similarly,
1
| 1
i = Z ajakf [xujuk+ —v'.vi(]dx,
ik o K J!
But

1 1 x=1 | x=1
‘/o‘ [xujul'( + 3 Vivi(]d.x = f . xujduk + Ef vJ‘de
X=



(using ul'(dx = duy, etc.),

1 x=1 1 X=1
= uj(l) k(1) +EVJ( Jvi(1) —f ukd(qu!) - E‘/‘ vkvaf
xX=0 X=0

(integration by parts, with vj(0) = 0)

2 1
1 0
= uj(l)[uk(l) - vk(l)] +7Jf [qukuj 35 Hvka-]dx
0
(using KuJ'-(l) + vj(l) = d(xuj) = -V;ujxdxl, etc.)

2 pl
. ! Y]
= wuj(l)uk(l) + = ; (qukuj + Hvyev;)dx

(using Kwu (1) + u(l) - vi(1) = 0)
= -Kwujl(l)u}'((l), iZk

(using the orthogonality conditions for the uj and vj)

o Y] S SN

where Nl(<0) is given by equation (A-5). Thus,

J=kz— aié—z =i Zaaku‘(l k(1)

=0

and together with the expression derived for I, equation (B-6)canbe writtenas
2 o
3 [ S e z (o)
Dacl 2 2 2Py 2 ek NP Y el - awda = o,
jk k=0 j=o

which is the same as equation (A-3).
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APPENDIX C

Numerical Solutions of Equation (A-3)

The infinite set of simultaneous linear algebraic equations repre-
sented by equation (A-3) can be compactly expressed in matrix notation by

defining the matrices

P= [Pyl (c-1)
A:[QQNEH@, (c-2)
X= {ans): (G2}

where ékj is the Kronecker delta defined by
6kj =1 k = j;

6k = 0, k7 j.

P and A are symmetric square matrices of infinite order; A is positive,
definite and diagonal; X is an infinite column matrix or vector. The
equivalent of equation (A-3) can now be written as

XPX=AX, (C-4)
with the characteristic equation

pP- A|=0
determining the eigenvalues )\ .

If equations (A-1) are truncated at j = r, the matrices of equation (C-4)
are of finite order, 1 + r. Proven computer programs are available for the
solution of equation (C-4) in this finite form, and thus this part of the
numerical solution involves no special problems. Computations of the
matrix elements, however, require numeral solutions of equation (59) for
the ¥y, and numeral integrations of equation (A-4), and the question of the
accuracy required for these quantities becomes important. Several test
computations were made with r as large as 16. All computations reported
in Tables I, II, and IIl used r = 9 or larger. It was found that the various
quantities computed from the solution of equation (C-4) would, in most
cases, converge quite rapidly up to r between 3 and 6, and then oscillate.

A typical case is shown in Figure 7, where the computed value of Nu,(x)
isplotted against r for H =1, K =1, and Ky = 0. For the cases explored,
the computation of Nu,(®) was always the most sensitive, while computations
of the A% were the least sensitive. The important question is whether the
oscillations are caused by small inaccuracies in the matrix elements, or
are characteristic of the procedure when applied to "large perturbations."



The matrix elements were
computed to five significant digits
after the decimal point, with un-
certainty in the last one or two digits.
Improvements in the accuracy of the
matrix elements, while the same
number of significant figures was
maintained, did not remove the oscil-
lations. Small differences in some
of the computed quantities were
4.90 O O | noticed, however, suggesting that

! & 8 12 6 further improvements in accuracy
might be helpful.

Nu,, (@)

Fig. 7. Successive Approximations

for Nu,(»), (H=1,K=1, Ky =0) It was noted that the occur-

rence of oscillations could be roughly

correlated with the occurrence of off-diagonal elements of P becoming
larger than diagonal elements in the same column. This suggests that the
oscillations could be characteristic of the procedure when applied to "large
perturbatlons" (i.e., when 1 - gi is not sufficiently small) since 125 = (1)
and Py = Nk when gj = 1. It was also noted, as illustrated in Figure 7,
that the oscillations appeared to be relatively uniform, whereas if small
numerical inaccuracies were the cause, a more random behavior might
be expected.

It was concluded that further study is required before the cause of
the oscillations can be definitely determined, and that,whatever the cause,
significant increases in computing time would be necessary to improve the
accuracy of the results. Each case (H, K, Ky ) with r = 9 required 10 min-
utes of IBM-704 machine time; for r = 16, nearly one half hour was nec-
essary. Since results for at least 25 different cases are desired, the total
machine time expenditure would be quite large. Thus, other methods of
computation are being explored for future extensions of the problem.
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